Treewidth of Chordal Bipartite Graphs
نویسندگان
چکیده
Chordal bipartite graph are exactly those bipartite graph in which every cycle of length at least six has a chord. The treewidth of a graph G is the smallest maximum cliquesize among all chordal supergraphs of G decreased by one. We present a polynomial time algorithm for the exact computation of the treewidth of all chordal bipartite graphs. keywords: Graph algorithms, Algorithms and Data Structures.
منابع مشابه
Chordal bipartite graphs of bounded tree- and clique-width
A bipartite graph is chordal bipartite if every cycle of length at least six has a chord. In the class of chordal bipartite graphs the tree-width and the clique-width are unbounded. Our main results are that chordal bipartite graphs of bounded vertex degree have bounded tree-width and that k-fork-free chordal bipartite graphs have bounded clique-width, where a k-fork is the graph arising from a...
متن کاملOn the Complexity of the Maximum Cut Problem
The complexity of the simple maxcut problem is investigated for several special classes of graphs. It is shown that this problem is NP-complete when restricted to one of the following classes: chordal graphs, undirected path graphs, split graphs, tripartite graphs, and graphs that are the complement of a bipartite graph. The problem can be solved in polynomial time, when restricted to graphs wi...
متن کاملTreewidth for Graphs with Small Chordality
A graph G is k-chordal, if it does not contain chordless cycles of length larger than k. The chordality Ic of a graph G is the minimum k for which G is k-chordal. The degeneracy or the width of a graph is the maximum min-degree of any of its subgraphs. Our results are the following: ( 1) The problem of treewidth remains NP-complete when restricted to graphs with small maximum degree. (2) An upp...
متن کاملMinimum Fill-in and Treewidth for Graphs Modularly Decomposable into Chordal Graphs
We show that a minimum ll-in ordering of a graph can be determined in linear time if it can be modularly decomposed into chordal graphs. This generalizes results of 2]. We show that the treewidth of these graphs can be determined in O((n + m) log n) time.
متن کاملPrecoloring Extension with Fixed Color Bound
Precoloring Extension (shortly PrExt) is the following problem: Given a graph G with some precolored vertices and a color bound k, can the precoloring of G be extended to a proper coloring of all vertices of G using not more than k colors? Answering an open problem from [6], we prove that PrExt with fixed color bound k = 3 is NP-complete for bipartite (and even planar) graphs, and we prove a ge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Algorithms
دوره 19 شماره
صفحات -
تاریخ انتشار 1995